
HAndidroid 

Projet informatique 

Réalisé par : Mathilde BRUN, Alexis FRADIN, Victoria HOPMANN, Amine 
RFIG et Anouar MABROUKI 
2​ème​ année Eurinsa, 2014/2015 

 
  

        I.            ​Mise en contexte​ : 
  

∙ La plupart des applications Android proposées sur le Web utilise le son et les                             
vibrations comme éléments secondaires. De plus, l’interaction entre l’utilisateur                 
et le jeu se base essentiellement sur les images proposées. Mais la technologie                         
des téléphones actuels donne accès à plus de fonctionnalités que celles                     
généralement exploitées. Ainsi, nous souhaitons créer un jeu Android                 
employant le son et les vibrations comme informations vers l’utilisateur, en leur                       
donnant la même importance que les images. Le challenge serait en partie                       
d’utiliser certains sens d’une manière plus poussée que d’ordinaire. 

  
      II.            ​Objectifs généraux​ : 

  
∙ Créer une application Android pouvant se jouer à l’aveugle, ou tout du moins                           

avec peu de visibilité et ainsi permettre au joueur de se projeter dans la                           
situation d’une personne malvoyante. Le challenge serait en partie d’utiliser ses                     
sens d’une manière inhabituelle et ainsi d’acquérir des compétences qu’il n’a                     
pas à l’origine, tel un aveugle qui doit optimiser son utilisation des autres sens                           
(ici principalement l’ouïe et le touché).Tout ceci se déroule dans le cadre d’un                         
jeu interactif. 

∙ Utilisation des technologies récentes proposées par les smartphones                 
(accéléromètre, vibration, son stéréo) et ainsi se détacher de l’utilisation                   
conventionnelle de l’écran passant par l’image et les touches. L’application                   
amènerait les utilisateurs à faire face à de nouveaux défis, ces éléments étant                         
pour certains encore peu mis en valeur dans les applications actuelles. 

  
 
 
 

1 



 
    III.            ​Description fonctionnelle​ : 

  
 

Fonction principale : Jeu basé sur des déplacements dans un espace virtuel. 

Description  L’utilisateur est modélisé par un personnage se trouvant dans un                   
parcours (de difficulté variable), modélisé par une map virtuelle, dans                   
lequel son personnage a un objectif à atteindre. Les déplacements                   
seront gérés via l’accéléromètre. L’utilisateur est guidé par d’autres                 
moyens que l’image : les sons et les vibrations du téléphone lui                       
indiquent les obstacles proches ou à distance. 
La relation entre le personnage et l’objectif à atteindre pourra modéliser                     
des besoins quotidiens (lieux à atteindre dans un certain délai,                   
nourriture à chercher …). Le jeu est gagné si le joueur réussi à atteindre                           
son objectif. 

Contraintes  Le jeu sera réalisé en 2 dimensions, et devra pourtant présenter un                       
environnement expressif. 
Le personnage pourra bouger en fonction de l’inclinaison de l’appareil.                   
Le joueur devra donc maîtriser l’orientation du personnage grâce à                   
l’accéléromètre. 
Une gestion du son en stéréo pourra être envisagée afin de mettre en                         
relief le monde auditif de l’utilisateur (usage d’un casque nécessaire). 

Niveau de priorité  Priorité supérieure 

  
  
 

Fonction 1​ : Menu proposant plusieurs options. 

Descriptions  Après avoir lancé son application, l’utilisateur a accès à un menu lui                       
présentant les choix suivants : 
 

1. Lancer une partie 
L’utilisateur pourra alors créer un profil en rentrant son identifiant et en                       
choisissant un personnage (défini par une couleur notamment) ou                 
reprendre le personnage correspondant à son profil si celui­ci est déjà                     
rentré dans l’application. Un second menu lui est ensuite proposé,                   
dans lequel il peut décider de commencer une nouvelle partie ou de                       
reprendre une partie sauvegardée. Le lancement d’une nouvelle partie                 
implique que l’utilisateur choisisse le niveau de difficulté avec lequel il                     

2 



veut jouer, parmi ceux qu’il a déjà débloqués. Si le joueur décide de                         
démarrer une nouvelle partie alors qu’une autre partie avait été                   
sauvegardée à son nom, la sauvegarde de sa nouvelle partie                   
remplacera la précédente sauvegarde. 

2. Historique des meilleurs scores: 
Les meilleurs scores sont présentés selon un classement global,                 

présentant les meilleurs scores pour chaque niveau, tous joueurs                 
confondus. 

3. Visualiser son profil 
L’utilisateur peut également visualiser ses scores pour chaque niveau 
déjà joué et modifier les paramètres de son profil.  

4. Quitter l’application 

Contraintes  La gestion des données sauvegardées  

Niveau de priorité  Priorité supérieure. 

 
 
 

Fonction 2​ : Création d’une map avec obstacles empêchant l’atteinte de l’objectif. 

Description  Le plan de la map sera doté de certains obstacles de types variés                         
(modélisation de murs, de trous, de meubles, d’escaliers… ). La                   
distribution et le nombre d’obstacles dans l’espace dépendra du niveau                   
de difficulté choisi auparavant. 

Contraintes  Créer des obstacles expressifs en 2D. 

Niveau de priorité  Priorité supérieure 

  
  
  

Fonction 3​ : Annonce de l’approche ou du heurt d’un obstacle grâce aux effets sonores et 
aux vibrations 

Descriptions  Le jeu pouvant être joué à l’aveugle, l’approche d’un ou plusieurs                     
obstacles est signifiée par des émissions de sons, modulées en                   
intensité selon la distance à l’obstacle, en présence des écouteurs,                   
dans l’oreille droite et/ou gauche selon la position du ou des obstacles                       
à proximité du personnage dans la map. La nature de ces sons                       
dépendra de la nature de l’obstacle. 

3 



Selon le type de l’obstacle, l’appareil emmétra des vibrations et des                     
sons modélisant le type de l’obstacle heurté. 

Contraintes  Trouver des sons et les diffuser et gestion du stéréo. 
Mettre un place un monde sonore et des vibrations modélisant                   
l’environnement  du personnage. 

Niveau de priorité  Priorité supérieure 

  
  
 

Fonction 4​ : Déclenchement d’un compte à rebours 

Description  La difficulté du jeu se caractérise en partie par le fait que le joueur est                             
pressé par le temps et doit atteindre son objectif avant la fin du                         
compte à rebours déclenché une fois le jeu lancé. La durée dépend de                         
la difficulté choisie auparavant.  

Contrainte  Le minuteur ne doit pas être gênant : il ne doit pas cacher une partie 
du labyrinthe (par exemple des chiffres dans un angle de l’écran). 

Niveau de priorité  Priorité moyenne 

  
 
 

Fonction 5​ : Faire perdre le joueur 

Description  Différents cas de défaite sont possibles.  
Si le personnage rencontre un obstacle létal, alors il perd la partie et                         
recommence sa partie au début du niveau perdu.  
Au bout d’un certain nombre d’obstacles heurtés, lorsque la vie du                     
personnage est écoulée, il perd également.  
Enfin, si le joueur n’atteint pas l’objectif dans le temps imparti, il perd. 
Après avoir perdu, le joueur est ramené au début du niveau qu’il vient                         
d’échouer.  

Contrainte  Avoir un compteur d’obstacles rencontrés par le joueur. 
Faire apparaître la vie restante par une barre de vie ou un autre 
moyen. 

Niveau de priorité  Priorité moyenne 

 
 
 

4 



Fonction 6​ : Faire une pause 

Description  En touchant la touche pause, le minuteur s’arrête et les déplacements                     
ne sont plus possibles. En touchant à nouveau la touche le jeu est                         
relancé. Lorsque l’utilisateur éteint l’écran, le jeu est également mis en                     
pause. 

Contraintes  Arrêter le minuteur et le relancer là où il en était. 
Mettre certains écouteurs (notamment celui de l‘accéléromètre) en 
pause. 

Niveau de priorité  Priorité inférieure 

   
  
 

Fonction 7​ : Animation modélisant la victoire ou la défaite à la fin du jeu 

Description  A la fin de la partie, on assiste au lancement d’une animation (de                         
victoire ou défaite). 

Contraintes  On verra la possibilité de créer une animation 2D ou 3D. 

Niveau de priorité  Priorité inférieure 

  
 
 

Fonction 8​ : Quitter le jeu 

Description  Lors de la partie, le bouton pause donnera également accès à la                       
possibilité de sauvegarder sa partie et de quitter le jeu. 

Contraintes   

Niveau de priorité  Priorité inférieure 

 
 
 
   

5 



Diagramme de cas d’utilisations 
 

 
 

 
Ce diagramme présente les actions directes que l’utilisateur peut effectuer dans                     

l’application. 
Il peut d’une part lancer une partie. Ceci implique que le joueur entre tout d’abord son                               

profil (en donnant son identifiant et en choisissant un personnage, qui serait notamment                         
caractérisé par une couleur) ou qu’il reprenne son personnage si l’utilisateur a déjà son profil                             
dans l’application. Le joueur peut ensuite choisir de commencer une nouvelle partie ou de                           
reprendre sa ​partie sauvegardée. Si le joueur choisit la première option, il devra également                           
sélectionner le niveau de difficulté de sa partie, parmi ceux qu’il a déjà débloqués. Une fois                               
ces étapes réalisées, la map correspondant aux différents choix est générée. 

Enfin, l’utilisateur peut consulter les meilleurs scores, classés par niveau, tous joueurs                       
confondus, ou bien visualiser son profil, où il peut modifier ses données et avoir accès à ses                                 
scores, ordonnés par niveau déjà joué.   

6 



Diagramme d’interactions (voir annexe 1) 
 
 

 
Ce diagramme représente les trois interactions principales entre l’application et                   

l’utilisateur. 
 
La première action est celle d’initialiser la partie, l’utilisateur, en cliquant le bouton «                           

jouer» va lancer le chargement de l’écran de sélection du profil. Une fois que l’utilisateur a                               
repris un profil existant ou en a créé un nouveau, l’écran du choix de la partie (nouvelle partie                                   
ou reprise d’une partie sauvegardée) est chargée. Dans le cas où l’utilisateur décide de                           
commencer une nouvelle partie, un menu de sélection du niveau de jeu est ensuite affiché,                             
menu que nous n’avons pas représenté ici. 
 

Les deux choix de partie (sauvegardée ou nouvelle) amènent à l’interaction de jeu. La                           
map est chargée par la machine, qui va ensuite charger les sons de l’environnement du                             
personnage et écouter l’accéléromètre.  
Si le téléphone n’est pas incliné, l’application va seulement jouer les sons et continuer à                             
écouter.  
S’il est incliné, l’application va alors regarder ce qui se trouve à l’emplacement où le                             
personnage veut aller. 

● S’il y a un obstacle létal, la partie est finie, et un écran de défaite est affiché. Le score                                     
est enregistré et l’application demande de choisir entre un retour au menu principal ou                           
un nouvel essai (non modélisé par soucis de clarté du diagramme). 

● S’il y a un obstacle normalement non létal, un certain nombre de vie(s) est retiré au                               
personnage. S’il est mort, on effectue les mêmes actions que lorsque un obstacle létal                           
. Autrement, le son à émettre lors du heurt de l’obstacle est joué et le téléphone vibre,                                 
puis l’application écoute à nouveau l’accéléromètre et jouer les sons de                     
l’environnement. 

● Si le déplacement amène à l’objectif à atteindre, on a chargement de l’écran de                           
victoire, affichage de celui­ci et enregistrement des scores. Le joueur a ensuite le choix                           
entre revenir au menu ou jouer à nouveau. 

Si l’emplacement où le personnage doit aller est vide, il va pouvoir se déplacer, l’affichage est                               
donc actualisé avec la nouvelle position. Les sons joués par l’application sont également                         
actualisés en fonction de l’environnement. L’application écoute à nouveau l’accéléromètre. 
 

La dernière action possible est d’afficher les scores. Le jeu charge le tableau des                           
meilleurs scores et va les afficher à l’utilisateur. 
 
 
 
 

7 



 
Diagramme de classes (voir annexe2) 

 
 

 
La classe principale est la classe Partie. Elle sera créée par le MenuPartie, soit lors du                               

lancement d’une nouvelle partie (son constructeur prenant en paramètres le profil de                       
l’utilisateur et le niveau de jeu choisi par celui­ci), soit lors du chargement d’une ancienne                             
partie, dont les caractéristiques sont sauvegardées dans un fichier xml. En effet, lorsque                         
l’utilisateur quittera la partie, ces attributs (profil et niveau) seront sauvegardés et rattachés à                           
la partie sauvegardée. 
Partie sera l’activité principale. 
 

Les sons sont référencés en tant qu'attribue par leur identifiant, de type int. 
Selon la position d’un obstacle proche du personnage, un même son (correspondant à                         
l’obstacle) sera joué, avec un volume différent, dans chaque oreille, afin de permettre au                           
joueur de repérer la position de l’obstacle. Par ailleurs, en fonction de la distance entre                             
chaque obstacle environnant et le personnage, un volume global est défini pour les sons                           
“émis” par l’obstacle (plus l’obstacle est proche, plus le volume global, à gauche et à droite,                               
est élevé). 
La gestion du son est gérée par la classe Sons, qui est un SoundPool. Seul l’attribut                               
obstaclesProches (faisant référence à un tableau d’obstacles suffisamment près du                   
personnage pour générer des sons de repérage) est fourni par la classe Partie, par                           
l’intermédiaire de la méthode chercherObstaclesProches(). Cette dernière modifie les attributs                   
volumeGlobal, volumeDroite et volumeGauche des obstacles concernés, pour que la classe                     
Sons puissent émettre les bons sons au bon volume. 
 

Plusieurs extensions d’obstacles pourront exister (obstacle létal ou non, mobile...).                   
L’objectif pourra être une extension d’obstacle. 
 

L’affichage des meilleurs scores (classement global) se fera à partir d’une ArrayList                       
des meilleurs scores. Pour afficher la valeur de ces scores dans un tableau, on utilisera la                               
méthode toString() de chaque score. 
 

Des fichiers xml permettront de sauvegarder les informations d’une partie, d’un profil                       
ainsi que les meilleurs scores. Les méthodes sauvegarder() des classes Profil et                       

8 



MeilleursScores et la méthode sauvegarderPartie() de la classe Partie permettent de                     
conserver les données de jeu dans ces fichiers. Ces données pourront être récupérées à                           
partir de méthodes se trouvant dans les classes qui les utilisent. 
 

La classe MenuNiveau, qui permet de gérer l’affichage du quatrième menu permettant                       
le choix du niveau de jeu avant le début d’une nouvelle partie afin d’alléger le diagramme. 
 
Les types ...Tab, par exemple booleanTab signifient que l’attribut est un tableau de booléens 
pour l’exemple choisi (les crochets ne peuvent être insérés dans le type des attributs). 

9 


