HAndidroid

Projet informatique

Réalisé par : Mathilde BRUN, Alexis FRADIN, Victoria HOPMANN, Amine
RFIG et Anouar MABROUKI

2°m¢ année Eurinsa, 2014/2015

Mise en contexte :

La plupart des applications Android proposées sur le Web utilise le son et les
vibrations comme éléments secondaires. De plus, l'interaction entre I'utilisateur
et le jeu se base essentiellement sur les images proposées. Mais la technologie
des téléphones actuels donne accés a plus de fonctionnalités que celles
généralement exploitées. Ainsi, nous souhaitons créer un jeu Android
employant le son et les vibrations comme informations vers I'utilisateur, en leur
donnant la méme importance que les images. Le challenge serait en partie
d’utiliser certains sens d’'une maniére plus poussée que d’ordinaire.

. Objectifs généraux :

Créer une application Android pouvant se jouer a I'aveugle, ou tout du moins
avec peu de visibilité et ainsi permettre au joueur de se projeter dans la
situation d’'une personne malvoyante. Le challenge serait en partie d’utiliser ses
sens d’une maniére inhabituelle et ainsi d’acquérir des compétences qu’il n’a
pas a l'origine, tel un aveugle qui doit optimiser son utilisation des autres sens
(ici principalement I'ouie et le touché).Tout ceci se déroule dans le cadre d’un
jeu interactif.

Utilisation des technologies récentes proposées par les smartphones
(accélérometre, vibration, son stéréo) et ainsi se détacher de ['utilisation
conventionnelle de I'écran passant par I'image et les touches. L’application
ameénerait les utilisateurs a faire face a de nouveaux défis, ces éléments étant
pour certains encore peu mis en valeur dans les applications actuelles.



Description fonctionnelle :

Fonction principale : Jeu basé sur des déplacements dans un espace virtuel.

L'utilisateur est modélisé par un personnage se trouvant dans un
parcours (de difficulté variable), modélisé par une map virtuelle, dans
lequel son personnage a un objectif a atteindre. Les déplacements
seront gérés via l'accélérometre. L'utilisateur est guidé par d’autres
moyens que limage : les sons et les vibrations du téléphone lui
indiquent les obstacles proches ou a distance.

La relation entre le personnage et I'objectif a atteindre pourra modéliser
des besoins quotidiens (lieux a atteindre dans un certain délai,
nourriture a chercher ...). Le jeu est gagné si le joueur réussi a atteindre
son objectif.

Le jeu sera réalisé en 2 dimensions, et devra pourtant présenter un
environnement expressif.

Le personnage pourra bouger en fonction de l'inclinaison de I'appareil.
Le joueur devra donc maitriser I'orientation du personnage grace a
'accélérométre.

Une gestion du son en stéréo pourra étre envisagée afin de mettre en
relief le monde auditif de I'utilisateur (usage d’un casque nécessaire).

Niveau de priorité

Priorité supérieure

Fonction 1 : Menu proposant plusieurs options.

Aprés avoir lancé son application, l'utilisateur a accés a un menu lui
présentant les choix suivants :

1. Lancer une partie
L’utilisateur pourra alors créer un profil en rentrant son identifiant et en
choisissant un personnage (défini par une couleur notamment) ou
reprendre le personnage correspondant a son profil si celui-ci est déja
rentré dans l'application. Un second menu lui est ensuite proposé,
dans lequel il peut décider de commencer une nouvelle partie ou de
reprendre une partie sauvegardée. Le lancement d’'une nouvelle partie
implique que l'utilisateur choisisse le niveau de difficulté avec lequel il




veut jouer, parmi ceux qu’il a déja débloqués. Si le joueur décide de
démarrer une nouvelle partie alors qu’une autre partie avait été
sauvegardée a son nom, la sauvegarde de sa nouvelle partie
remplacera la précédente sauvegarde.

2. Historique des meilleurs scores:

Les meilleurs scores sont présentés selon un classement global,
présentant les meilleurs scores pour chaque niveau, tous joueurs
confondus.

3. Visualiser son profil
L’utilisateur peut également visualiser ses scores pour chaque niveau
déja joué et modifier les paramétres de son profil.

4. Quitter I'application

La gestion des données sauvegardées

Niveau de priorité

Priorité supérieure.

Fonction 2 : Création d’'une map avec obstacles empéchant I'atteinte de I'objectif.

Le plan de la map sera doté de certains obstacles de types variés
(modélisation de murs, de trous, de meubles, d’escaliers... ). La
distribution et le nombre d’obstacles dans I'espace dépendra du niveau
de difficulté choisi auparavant.

Créer des obstacles expressifs en 2D.

Niveau de priorité

Priorité supérieure

Fonction 3 : Annonce de I'approche ou du heurt d’'un obstacle grace aux effets sonores et

aux vibrations

Le jeu pouvant étre joué a l'aveugle, 'approche d’'un ou plusieurs
obstacles est signifiée par des émissions de sons, modulées en
intensité selon la distance a l'obstacle, en présence des écouteurs,
dans l'oreille droite et/ou gauche selon la position du ou des obstacles
a proximité du personnage dans la map. La nature de ces sons
dépendra de la nature de I'obstacle.




Selon le type de l'obstacle, I'appareil emmétra des vibrations et des
sons modélisant le type de I'obstacle heurté.

Trouver des sons et les diffuser et gestion du stéréo.
Mettre un place un monde sonore et des vibrations modélisant
'environnement du personnage.

Niveau de priorité

Priorité supérieure

Fonction 4 : Déclenchement d’un compte a rebours

La difficulté du jeu se caractérise en partie par le fait que le joueur est
pressé par le temps et doit atteindre son objectif avant la fin du
compte a rebours déclenché une fois le jeu lancé. La durée dépend de
la difficulté choisie auparavant.

Le minuteur ne doit pas étre génant : il ne doit pas cacher une partie
du labyrinthe (par exemple des chiffres dans un angle de 'écran).

Niveau de priorité

Priorité moyenne

Fonction 5 : Faire perdre le joueur

Différents cas de défaite sont possibles.

Si le personnage rencontre un obstacle létal, alors il perd la partie et
recommence sa partie au début du niveau perdu.

Au bout d’un certain nombre d’obstacles heurtés, lorsque la vie du
personnage est écoulée, il perd également.

Enfin, si le joueur n’atteint pas I'objectif dans le temps imparti, il perd.
Aprés avoir perdu, le joueur est ramené au début du niveau qu’il vient
d’échouer.

Avoir un compteur d’obstacles rencontrés par le joueur.
Faire apparaitre la vie restante par une barre de vie ou un autre
moyen.

Niveau de priorité

Priorité moyenne




Fonction 6 : Faire une pause

En touchant la touche pause, le minuteur s’arréte et les déplacements
ne sont plus possibles. En touchant a nouveau la touche le jeu est
relancé. Lorsque l'utilisateur éteint I'écran, le jeu est également mis en
pause.

Arréter le minuteur et le relancer la ou il en était.
Mettre certains écouteurs (notamment celui de I‘accélérometre) en
pause.

Niveau de priorité | Priorité inférieure

Fonction 7 : Animation modélisant la victoire ou la défaite a la fin du jeu

A la fin de la partie, on assiste au lancement d’une animation (de
victoire ou défaite).

On verra la possibilité de créer une animation 2D ou 3D.

Niveau de priorité | Priorité inférieure

Fonction 8 : Quitter le jeu

Lors de la partie, le bouton pause donnera également accés a la
possibilité de sauvegarder sa partie et de quitter le jeu.

Niveau de priorité | Priorité inférieure




Diagramme de cas d’utilisations

Consulter les
meilleurs scores

Visualiser son profil
(avec possibilité de le
maodifier)

Consulter ses
propres meilleurs
scores par niveau

\
E?{i;i?;r%rnum _nclude Jouer & une nouvelle ) _include_ Chaisir le niveau ) include
include .« personnage J partie de la partie déclencher le minuteur
l’ . -
g - /" include R
Lancer une partie N / (une des deux e
S ,/ solutions)

P
N _~‘Include
.

Ce diagramme présente les actions directes que l'utilisateur peut effectuer dans
I'application.

Il peut d’'une part lancer une partie. Ceci implique que le joueur entre tout d’abord son
profil (en donnant son identifiant et en choisissant un personnage, qui serait notamment
caractérisé par une couleur) ou qu’il reprenne son personnage si l'utilisateur a déja son profil
dans l'application. Le joueur peut ensuite choisir de commencer une nouvelle partie ou de
reprendre sa partie sauvegardée. Si le joueur choisit la premiére option, il devra également
sélectionner le niveau de difficulté de sa partie, parmi ceux qu’il a déja débloqués. Une fois
ces étapes réalisées, la map correspondant aux différents choix est générée.

Enfin, l'utilisateur peut consulter les meilleurs scores, classés par niveau, tous joueurs
confondus, ou bien visualiser son profil, ou il peut modifier ses données et avoir accés a ses
scores, ordonnés par niveau déja joué.



Diagramme d’interactions (voir annexe 1)

Ce diagramme représente les trois interactions principales entre I'application et
l'utilisateur.

La premiére action est celle d’initialiser la partie, I'utilisateur, en cliquant le bouton «
jouer» va lancer le chargement de I'écran de sélection du profil. Une fois que l'utilisateur a
repris un profil existant ou en a créé un nouveau, I'écran du choix de la partie (nouvelle partie
ou reprise d’une partie sauvegardée) est chargée. Dans le cas ou l'utilisateur décide de
commencer une nouvelle partie, un menu de sélection du niveau de jeu est ensuite affiche,
menu que nous n‘avons pas représenté ici.

Les deux choix de partie (sauvegardée ou nouvelle) aménent a l'interaction de jeu. La
map est chargée par la machine, qui va ensuite charger les sons de I'environnement du
personnage et écouter I'accélérométre.

Si le téléphone n’est pas incliné, I'application va seulement jouer les sons et continuer a
écouter.

S'’il est incliné, l'application va alors regarder ce qui se trouve a I'emplacement ou le
personnage veut aller.

e S’il y a un obstacle Iétal, la partie est finie, et un écran de défaite est affiché. Le score
est enregistré et I'application demande de choisir entre un retour au menu principal ou
un nouvel essai (non modélisé par soucis de clarté du diagramme).

e S’il y a un obstacle normalement non létal, un certain nombre de vie(s) est retiré au
personnage. S’il est mort, on effectue les mémes actions que lorsque un obstacle Iétal
. Autrement, le son a émettre lors du heurt de I'obstacle est joué et le téléphone vibre,
puis l'application écoute a nouveau I'accélérometre et jouer les sons de
'environnement.

e Si le déplacement améne a l'objectif a atteindre, on a chargement de I'écran de
victoire, affichage de celui-ci et enregistrement des scores. Le joueur a ensuite le choix
entre revenir au menu ou jouer a nouveau.

Si 'emplacement ou le personnage doit aller est vide, il va pouvoir se déplacer, I'affichage est
donc actualisé avec la nouvelle position. Les sons joués par I'application sont également
actualisés en fonction de I'environnement. L’application écoute a nouveau 'accélérométre.

La derniére action possible est d’afficher les scores. Le jeu charge le tableau des
meilleurs scores et va les afficher a I'utilisateur.



Diagramme de classes (voir annexe2)

La classe principale est la classe Partie. Elle sera créée par le MenuPartie, soit lors du
lancement d’'une nouvelle partie (son constructeur prenant en parameétres le profil de
I'utilisateur et le niveau de jeu choisi par celui-ci), soit lors du chargement d’'une ancienne
partie, dont les caractéristiques sont sauvegardées dans un fichier xml. En effet, lorsque
I'utilisateur quittera la partie, ces attributs (profil et niveau) seront sauvegardés et rattachés a
la partie sauvegardée.

Partie sera I'activité principale.

Les sons sont référencés en tant qu'attribue par leur identifiant, de type int.

Selon la position d’'un obstacle proche du personnage, un méme son (correspondant a
'obstacle) sera joué, avec un volume différent, dans chaque oreille, afin de permettre au
joueur de repérer la position de I'obstacle. Par ailleurs, en fonction de la distance entre
chaque obstacle environnant et le personnage, un volume global est défini pour les sons
“émis” par I'obstacle (plus I'obstacle est proche, plus le volume global, a gauche et a droite,
est élevé).

La gestion du son est gérée par la classe Sons, qui est un SoundPool. Seul I'attribut
obstaclesProches (faisant référence a un tableau d’obstacles suffisamment prés du
personnage pour générer des sons de repérage) est fourni par la classe Partie, par
'intermédiaire de la méthode chercherObstaclesProches(). Cette derniére modifie les attributs
volumeGlobal, volumeDroite et volumeGauche des obstacles concernés, pour que la classe
Sons puissent émettre les bons sons au bon volume.

Plusieurs extensions d’obstacles pourront exister (obstacle Iétal ou non, mobile...).
L’objectif pourra étre une extension d’obstacle.

L’affichage des meilleurs scores (classement global) se fera a partir d’'une ArrayList
des meilleurs scores. Pour afficher la valeur de ces scores dans un tableau, on utilisera la
méthode toString() de chaque score.

Des fichiers xml permettront de sauvegarder les informations d’une partie, d’'un profil
ainsi que les meilleurs scores. Les méthodes sauvegarder() des classes Profil et



MeilleursScores et la méthode sauvegarderPartie() de la classe Partie permettent de
conserver les données de jeu dans ces fichiers. Ces données pourront étre récupérées a
partir de méthodes se trouvant dans les classes qui les utilisent.

La classe MenuNiveau, qui permet de gérer I'affichage du quatriéeme menu permettant
le choix du niveau de jeu avant le début d’'une nouvelle partie afin d’alléger le diagramme.

Les types ...Tab, par exemple booleanTab signifient que I'attribut est un tableau de booléens
pour 'exemple choisi (les crochets ne peuvent étre insérés dans le type des attributs).



